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In this note I want to point out a relation between the No-Free-Lunch (NFL)
Theorem and some simple models of biological evolution. This point is math-
ematically trivial, but I believe it nevertheless is of some interest. The NFL
theorem characterizes the relative average performance of search algorithms and
without being an expert in the field, I believe that its main impact has been to
make researchers more cautious in interpreting benchmark results as indicating
that one search algorithm is better than another. Via William Dembski [I], one
of the most well-known advocates of Intelligent Design (ID), the NFL theorem
has also entered into arguments purporting to demonstrate scientifically that
some biological features should be attributed to godly intervention (or, possi-
bly, intervention by some other “intelligent agent”). Dembski’s use of the NFL
theorem has been criticized by several authors (see [5l [0, [10, I1] for a sample
of different critical views), but as far as I know it has not been noted that the
assumptions used to derive the original NFL theorem, far from enabling the
scientific conclusion that evolution needs the helping hand of God, have actu-
ally been used in somewhat weaker form in simple models of evolution, models
in which the evolutionary performance is not prohibitively bad. Both the NFL
theorem and these simple models of evolution will be outlined below.

Expressed in mathematical terms, an optimization problem is the problem
of finding the optimum of a function f defined on some search space. Pessimists
think of f as a cost function, assigning a cost value to each element in the search
space, to be minimized. Optimists think of f as an objective or fitness function,
assigning measures of quality, to be maximized.

The NFL Theorem, one of several results about optimization presented by
Wolpert and Macready [14], states in its most basic form that if the function f to
be optimized is chosen randomlyﬂ among all possible functions, then all search
algorithms have the same statistically expected performance. As emphasized
by Héggstrom [5], to stipulate that

e the function f is chosen randomly
is equivalent to stipulating that

e the values of the function f at different points are chosen independently
of each other, and

1By “chosen randomly” I mean “chosen according to a uniform probability distribution”.



e the value of the function f at any given point is chosen randomly from
the range of possible fitness values.

A consequence of the statistical independence of the fitness values at any
two different locations is that already encountered points in the search space
are irrelevant for the decision of which new point to sample next. All search
strategies have the same performance as random guessing simply because there
is no potential for learning from what is encountered. Indeed, the NFL result
for search algorithms [14] is an analogue of earlier results for learning algorithms
[12, 13]. Being able to in some sense learn from experience is much more impor-
tant for learning algorithms than for search algorithms, and in the NFL scenario
with a randomly chosen f any search algorithm will in fact achieve a fairly good
performance level [2] and, very significantly, the performance is independent of
the size of the search space. The result that all search algorithms have the same
statistically expected performance has also been obtained under weaker condi-
tions [6} [7]; the absolute performance in those cases depends on the abundances
of points with different fitness values.

With this introduction to Wolpert and Macready’s NFL result, I want to
proceed to point out that the type of uncorrelated fitness landscapes that is
produced when the fitness values at different locations are statistically indepen-
dent is known in the literature as a rugged fitness landscape. This class of fitness
landscapes is among the simplest to analyze mathematically and has therefore
been studied in some detail [8]. Notable results, for a search space correspond-
ing to haploid genotypes with n loci and k alleles at each locus, include that the
shortest path to the nearest local maximum is a just few steps (point mutations)
long, that the average length of the path actually taken during a pure ascent
to a local maximum grows very slowly (logarithmically) in the number of loci
(n) and alleles (k). The higher a local maximum lies, the larger its basin of
attraction with respect to pure ascent in the fitness landscape, meaning that
ascent in a rugged fitness landscape is biased towards eventually ending up in
a high local maximum. In later work, Gavrilets [3, [4] has considered the re-
gions of the fitness landscape where the fitness is higher than some threshold c.
Mathematically, such a region is written

Ty = {a € X|f(2) > c}. (1)

For Gavrilets the search space X is taken to be of the form X = {Aq, ..., A, }*"
representing the possible genotypes of a diploid organism with n loci and k pos-
sible alleles at each locus. The threshold c is taken by Gavrilets to be the lowest
fitness level for which an organism is still viable, so that T’ is the set of all
viable organisms, but the result to be mentioned below is not dependent on any
specific choice of ¢. For example, if the range of fitness values is normalized to
go from 0 to 1, one can restrict attention to the top 1% of the fitness range by
choosing ¢ = 0.99.

What does the set of high-fitness genotypes look like? A few possibilities are
that the genotypes are scattered into numerous small disconnected islands, a
well-connected web of noodles immersed in a soup of lower-fitness genotypes, a



swiss cheese with holes corresponding to lower-fitness genotypes, or just a single
big island. The answer is that it depends on the proportion p of fitness values
above the threshold ¢ and the dimensionality 2n of the genotype space. For a
large dimensionality, there is a percolation threshold at

__ (2)
DPthres = QTL(]C — 1) .

When p is larger than %, the set Ty forms a “swiss cheese” type of structure,
with holes in what is otherwise large continuous regions of high-fitness geno-
types. More interestingly, when p is small, but above the percolation threshold,
the set Ty forms a big well-connected “noodle soup” where the vast majority
of all high-fitness genotypes are connected by a web of paths that never dip
below the fitness threshold c¢. Because the number of mutational neighbours
increases with increasing dimensionality, so does the number of potential paths
and consequently the probability that any two high-fitness genotypes are con-
nected must also increase. Therefore the well-connected “noodle soup” structure
becomes easier to obtain the higher the dimensionality of the genotype space.
For a genotype space representing 100 loci, the genotypes with fitness values
in the top 1% of the range will be well-connected. For a genotype space rep-
resenting 1000 loci, one can restrict attention to the top 0.1% and still have a
well-connected set, and so on.

I want to emphasize the scaling in the size and dimensionality of the search
space, because it goes against a common intuition that finding points with high
fitness gets more difficult as the search space becomes larger. The reason is
simply that a randomly chosen fitness function is a very poor model for features
that require many tightly coordinated parts, for fitness landscapes where high-
fitness regions are very rare and small, and for other things one might have
in mind when forming intuitions that finding points with high fitness is very
difficult. A randomly chosen fitness function, as in the NFL scenario, does not
at all fit with that. Instead, a very special choice of fitness function is required
if a model that corresponds to such intuitions is desired.

To summarize, the implications of the assumption of a randomly chosen
fitness function do not just include Wolpert and Macready’s NFL result, but
also the results

e that the absolute performance of any search for high-fitness genotypes
is fairly good and, importantly, independent of the size of the genotype
space, and

e the set of high-fitness genotypes is well-connected and the connectedness
increases with increasing dimensionality of the genotype space.

More metaphorically, the NFL scenario may deny biological evolution a free
lunch, but once the lunch break is over it hands evolution a large free bowl of
noodle soup.

Acknowledgement: Thanks to M. Young for commenting on an earlier
version.
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